30 research outputs found

    Improving the Specificity of EEG for Diagnosing Alzheimer's Disease

    Get PDF
    Objective. EEG has great potential as a cost-effective screening tool for Alzheimer's disease (AD). However, the specificity of EEG is not yet sufficient to be used in clinical practice. In an earlier study, we presented preliminary results suggesting improved specificity of EEG to early stages of Alzheimer's disease. The key to this improvement is a new method for extracting sparse oscillatory events from EEG signals in the time-frequency domain. Here we provide a more detailed analysis, demonstrating improved EEG specificity for clinical screening of MCI (mild cognitive impairment) patients. Methods. EEG data was recorded of MCI patients and age-matched control subjects, in rest condition with eyes closed. EEG frequency bands of interest were θ (3.5–7.5 Hz), α1 (7.5–9.5 Hz), α2 (9.5–12.5 Hz), and β (12.5–25 Hz). The EEG signals were transformed in the time-frequency domain using complex Morlet wavelets; the resulting time-frequency maps are represented by sparse bump models. Results. Enhanced EEG power in the θ range is more easily detected through sparse bump modeling; this phenomenon explains the improved EEG specificity obtained in our previous studies. Conclusions. Sparse bump modeling yields informative features in EEG signal. These features increase the specificity of EEG for diagnosing AD

    Improving Eye Motion Sequence Recognition Using Electrooculography Based on Context-Dependent HMM

    Get PDF
    Eye motion-based human-machine interfaces are used to provide a means of communication for those who can move nothing but their eyes because of injury or disease. To detect eye motions, electrooculography (EOG) is used. For efficient communication, the input speed is critical. However, it is difficult for conventional EOG recognition methods to accurately recognize fast, sequentially input eye motions because adjacent eye motions influence each other. In this paper, we propose a context-dependent hidden Markov model- (HMM-) based EOG modeling approach that uses separate models for identical eye motions with different contexts. Because the influence of adjacent eye motions is explicitly modeled, higher recognition accuracy is achieved. Additionally, we propose a method of user adaptation based on a user-independent EOG model to investigate the trade-off between recognition accuracy and the amount of user-dependent data required for HMM training. Experimental results show that when the proposed context-dependent HMMs are used, the character error rate (CER) is significantly reduced compared with the conventional baseline under user-dependent conditions, from 36.0 to 1.3%. Although the CER increases again to 17.3% when the context-dependent but user-independent HMMs are used, it can be reduced to 7.3% by applying the proposed user adaptation method

    Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

    Get PDF
    Medical studies have shown that EEG of Alzheimer's disease (AD) patients is “slower” (i.e., contains more low-frequency power) and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1) EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI) and control subjects; (2) EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony), classification rates of 83% (MCI) and 98% (MiAD) are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone

    Noninvasive prediction of shunt operation outcome in idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a syndrome characterized by gait disturbance, cognitive deterioration and urinary incontinence in elderly individuals. These symptoms can be improved by shunt operation in some but not all patients. Therefore, discovering predictive factors for the surgical outcome is of great clinical importance. We used normalized power variance (NPV) of electroencephalography (EEG) waves, a sensitive measure of the instability of cortical electrical activity, and found significantly higher NPV in beta frequency band at the right fronto-temporo-occipital electrodes (Fp2, T4 and O2) in shunt responders compared to non-responders. By utilizing these differences, we were able to correctly identify responders and non-responders to shunt operation with a positive predictive value of 80% and a negative predictive value of 88%. Our findings indicate that NPV can be useful in noninvasively predicting the clinical outcome of shunt operation in patients with iNPH

    Audio representations of multi-channel EEG: a new tool for diagnosis of brain disorders

    No full text
    Objective: The objective of this paper is to develop audio representations of electroencephalographic (EEG) multichannel signals, useful for medical practitioners and neuroscientists. The fundamental question explored in this paper is whether clinically valuable information contained in the EEG, not available from the conventional graphical EEG representation, might become apparent through audio representations. Methods and Materials: Music scores are generated from sparse time-frequency maps of EEG signals. Specifically, EEG signals of patients with mild cognitive impairment (MCI) and (healthy) control subjects are considered. Statistical differences in the audio representations of MCI patients and control subjects are assessed through mathematical complexity indexes as well as a perception test; in the latter, participants try to distinguish between audio sequences from MCI patients and control subjects. Results: Several characteristics of the audio sequences, including sample entropy, number of notes, and synchrony, are significantly different in MCI patients and control subjects (Mann-Whitney p < 0.01). Moreover, the participants of the perception test were able to accurately classify the audio sequences (89% correctly classified). Conclusions: The proposed audio representation of multi-channel EEG signals helps to understand the complex structure of EEG. Promising results were obtained on a clinical EEG data set.Published versio

    Modulation of the Time Relation of Action Potential Impulses Propagating Along an Axon

    No full text
    corecore